Example 10 - Chapter 13 Class 11 Limits and Derivatives (Term 1 and Term 2)
Last updated at Sept. 6, 2021 by Teachoo
Last updated at Sept. 6, 2021 by Teachoo
Transcript
Example 10 Find the derivative of f(x) = x2. Given f(x) = x2 We need to find derivative of f(x) i.e. f’ (x) We know that f’(x) = limh→0 f x + h − f(x)h Here, f (x) = x2 So, f (x + h) = (x + h)2 Putting values f’ (x) = limh→0 𝑥 + ℎ2 − 𝑥2ℎ = limh→0 𝑥2 + ℎ2 + 2𝑥ℎ − 𝑥2 ℎ = limh→0 ℎ2 + 2𝑥ℎ − 𝑥2 + 𝑥2ℎ = limh→0 ℎ ℎ + 2𝑥 + 0ℎ = limh→0 ℎ (ℎ + 2𝑥)ℎ = limh→0 h + 2x Putting h = 0 = 0 + 2x = 2x Hence f’(x) = 2x
Examples (Term 1 and Term 2)
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important You are here
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Examples (Term 1 and Term 2)
About the Author